
Internship: My internship was called “Computer Graphics”, and it
was at The Kelley Engineering Center at Oregon State University. I
came into it not knowing a ton about the topic, but I love math and I
am fascinated with computer science.

Graph visualization is the visual representation of the nodes and edges
of a graph. (Linkurious.com) In the pictures below, you can see how
nodes and edges are being used to represent area in a shaded 3D

object.

● Make a tool that can create node-edge graphs
● Tool must be able to:

○ Create/remove/merge nodes
○ Contain several settings for nodes
○ Be able to zoom and have several levels of abstraction

● Learning C++
● Researching OpenGL
● Researching Shaders
● Learning How to use Qt
● Designing an Interface
● Implementing C++ Graphing Libraries

C++ is a general-purpose programming language. I learned C++
from several online tutorials in both written form and from Youtube.

Shaders-Shade and change the appearance of a 3D object. I used
a tool called GLMan to be able to change the shader and the scene
without closing the scene and manualing inputting a transformation.
The shader pipeline is shown below, which demonstrates how all of
the types of shaders interact.

Steps:

● Look at Other Interfaces

● Decide Which Functions I Need

● Design My Own Interface in Qt

Qt is an application framework and widget toolkit used for creating
embedded graphical user interfaces. I used the Qt designer to
design the interfaces, and the “Signal and Slots” functionality to add
functions to the different projects. I learned Qt through a series of
Youtube tutorials and experimenting with the different widgets in
the designer. The picture shown is the interface of the Qt designer.

Looking For:

● Functions
○ What each interface includes in order to output a graph

● Windows
○ What each window displays

● Layouts
○ How it places each part in the interface

● Each are built with the same sets of buttons and widgets
● Pictures taken from the interfaces that I researched are where

the graph will be

OpenGL- An application programming interface used for rendering
2D and 3D vector graphics. It uses several libraries to create the
different shapes. The most important skills to learn are how to
create shapes, transform the shapes, and, most importantly,
creating and using the camera. I learned OpenGL by reading the
OpenGL Programming Guide. Here is an example of a scene that
the book gave. It originally showed two spheres, one orbited
around the other, and then I added a smaller sphere to orbit around
the medium sized sphere and also changed their color.

● Functions
○ Add

■ Add- Adds a node where the mouse is clicked
■ Remove- Removes a node that is clicked
■ Merge- Merges two selected nodes
■ Save Image- Saves both images shown on both widgets

○ Level of Abstraction Sliders- Changes the different levels of
abstraction in the large widget

○ Settings-
■ Name- Shows a selected nodes name
■ Type- Shows a selected nodes type
■ Area- Shows a selected nodes area
■ Adjacent Node Connections- Shows the connections that a

selected node has to other nodes
○ Widgets

■ Large Widget- Allows editing and shows the nodes names
and their connections

■ Small Widget- Shows the entire graph with a box around
what you are viewing in the large widget

○ List- Shows a list of all nodes and their connections
○ Zoom- Controls how zoomed in the large widget is. Zooming

out combines nodes in groups into one nodes and does the
opposite while zooming in.

Stanford Network Analysis Platform (snap)-

Boost- Igraph-

Graphviz- Tulip-

I am now trying to implement a tool that is a part of the Graphviz
library called dotty. It allows a user to click to create a node and
drag the middle mouse button between two nodes to create an

edge. The dotty interface is shown below.

For the remainder of the internship, I’ll continue to work to get as far
as I can in the tool in the limited time that I have left. I want to finish
adding functions to the tool, and maybe try to add a shader to a 3D

object to visualize data.

The invention of computers and the internet has revolutionized data
visualization because of the large amount of data, graphs that can be
animated, and graphs that can now be interactive. (Medium.com) This

example allows a user to change the graph’s data depending on several
variables. This tool can be found at

http://shiny.rstudio.com/gallery/movie-explorer.html

 I learned about shaders from reading the “Graphics Shaders: Theory
and Practice” textbook shown below. An example of a shader is
shown in the two pictures of the donut shape. One has rainbow stripes
on it, but the other one has some variables changed (sliders shown
bottom right corner) which changes its ultimate appearance.

● Mentors:
■ Dr. Yue Zhang-School of EECS
■ Dr. Eugene Zhang-School of EECS
■ Fariba Khan-School of EECS
■ Jinta Zheng-School of EECS

ASE

■ Teacher Monitor- Cara Benfield

Oregon State University
References:

● Brown, Nick. “The Past and Future of Data Visualization – Nick Brown – Medium.” Medium, Augmenting Humanity, 21 Sept.
2015, medium.com/@uptownnickbrown/the-past-and-future-of-data-visualization-d58a4b0af6b0.

● “Graph Visualization: Why It Matters.” Linkurious, 15 May 2018, linkurio.us/blog/why-graph-visualization-matters/.

